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INTERACTION BETWEEN A SUPERSONIC STREAM AND A PARALLEL

SUBSONIC S- BOUNDED BY FIXJIDAT REST

By Herbert S. Ribner and E. Leonard Arnoff .

SUMMARY

In a simplified inviscid model of shock-wave boundary-lsyer titer-
action, Tsien and Finston have replaced the boundary layer by a uniform
subsonic stream bounded on one side by a solid wall and on the other
side by the interface.with a uniform supersonic stream of semi-infinite
extent. Among other things, this model fails to shulate the separated
region or “dead-air”bubble that generdd.y appears in a laminar boundary
layer suhjetted to an oblique incident shock wave of moderate strength.
In order to introduce a main feature of such a dead-air region, the model
has been modified herein by replacing the solid wall.by an interface with
fluid at rest. ~

The presence of the bound&y layer sandwiched between the outer
supersonic flow”=d the dead-air regionis found scarcely to modify the
shape, in the vicinity of @ shock, of the expansive “corner” turn that
would exist @the shock were ticident directly on the dead-air region
without the intermediary of the boundary layer; there are local distor-
tions top and bottom, but these are reduced to negligible amounts several
boundary-layer thicknesses to the left or right of the effective corner.

In support of a phase of,the work of Lester Lees, it is conctided
that in a more accurate treatment of the complete region of shock
boundary-layer interaction the Prandtl boundary-lsyer equations may be
applied to the entire exbent of the disturbed boundary layer, applying
as a boundary condition a sudden turn of the displacement surface through
twice the shock deflection angle at the point of shock incidence. There-
by the flow details in the imnediate vicinity of the shock wtEl be some-
what in error, but the over-aU features of the interaction are capable
of being given correctly.
appear to be the point ,of
the form of the tur~ulent

1

Present unknown elements h“ such an amlicat ion
transition from
equations where

laminar to turbulent f~~w and
a separated bubble exists.
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INTRODUCTION ‘

The complex problem of the interactionbetween shock waves and
boundary layers in supersonic flow is not yet clearly understood,
despite a number of theoretical studies (references 1 to 7). Among
these, the anaJysis of Tsien and Finston (reference 2) is singled
out here for further examination. In the Tsien-Finstonmodel the
boundary layer is simulatedby a

7

iform subsonic-stresm of finite
width bounded on one side by a s id wall and on the other side by
the interface with a uniform supersonic stresm of semi-infinite
ectent. The fluid is assumed to be nonviscous and nonheat-conducting
and the disturbances are assumed small.

The boundary-layer perturbation calculated in reference 2 from this
model has the general character shown ti sketch 1. The experimental
perturbation for a laminar boundary layer (e.g., references 8 and 9),
on the other hand, has the general character shown in sketch 2. The
resemblance is not close. A striking exper=ntal feature is the pres-
ence of a separated region, which appears for &ll but the weakest inci-
dent shock strengths (references 3 and 9). ?I?heseparated region is not
simuMted in the Tsien-Finston mbdel of shock.boundary-lsyer interaction,
and this constitutes an important shortcoming of the model for laminar
boundary layers. For turbulent boundary layers subjected to moderate
shock strengths, on the other hand, there will be no separation, and
the model my be quite good..

The air in a separated bubble is substantially at res%. An oblique
shock incident directly on a dead-air region, without the intermediary
of a boundary layer, is known to reflect as an expansion wave (see
sketch 3). Note that the interface in sketch 3 is deflected much like
the potential flow just above the actual boundary layer (sketch 2), a
feature completely unduplicated in the Tsien-Fizmton model (sketch 1}.
A natural hference is that the separated region dominates the behavior
@ the immediate vicinity of the shock, and the upper surface behaves,
in that vicinity, substantially as M the entire boundary layer were
replaced by a dead-air region.

This tempting inference has been made to provide a boundary condi-
tion in the work of Lees (reference 6),and of Ritter (reference 7), along
with other simplifying assumptions; it is the purpose of the present
paper to test its validity on a shplified model applicable only to the
-diate vic~ty of the shock. For this purpose a modification of
the Tsien-Finston model will serve: the solid lower wall of sketch 1 is
replaced by a semi-Minite region of air at rest, or “dead air”. Thus
the boundary condition of zero vertical perturbation velocity sk the
wall is replaced by a condition of constant pressure &long the boundary
of the dead-air region; in all other respects there is no change from
the original model. ExperimentsJdy (reference 9), an approximation to

—-..——— .——. . . .._ —--__ —.. .. _________ ___ ..— _______ _____ .
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the condition of constant pressure is fcm.ndover a substantial portion
of the separated air bubble including the part directly under the inci-
dent shock; the ultimate sharp pressure rise generally occurs smewhat
downstream of the shock.

It has been implicit in the discussion that attention was limited
to the boundary layer adjacent to a solid body. Also of intere”s~,how-
ever, is the boundary layer between a two-dimensional supersonic jet and
the statiormy fluid bounding it. The present modified flow model wSU
describe, in idealized fashion, the interaction of an oblique shock wave
(such as may emanate f-. a nozzle lip) with such a jet boundsry layer.
The model is, in fact, better adapted to such a fluid-to-fluidboundary
layer than it ip to the fluid-to-wall boundary layer.

The mathematical analysis herein of the mod~ied model is necess=ily
parallel in a number of respects to the original.work of Tsien and Finston.
Nevertheless, it has been thought worthwhile to provide a complete account
h an appendix for purposes of unity and ckity. The symbols used in this
_sis are presented
abbreviated version of
tigatibn was conducted

in appendix A; the analysis, in appendix B. An
the analysis is given in the main text. The tives-
at the NA.CALewis laboratory.

SYNOPSIS OF ANALYsrs .

Flow regions and governing equations. - In figure 1 are shown the
supersonic region (region 1) at the top, the-subsonic region (regioa 2)
in the middle, and the dead-air regicm (regim 3) at the bottom. A weak
shock wave, or Mach wave, is incident on the interface between.re@ons 1
and 2. The governing equations for the perturbatlm potential are

() az~ a%j
Region 1: 1 - M12 .— + —=0, Ml>l

&2 @’

ti region 1 the perturbation potentid includes a part (incoming wave)
which represents directly the ticident Mach wave and a part (o&go@
waves) which arises from the consequent warping of the interface between
regions 1 and 2.

Boundary conditions at each interface. - The boundary conditions are:
(a) The perturbation pressure must be the ssme on both sides of an inter-
face (taken to be zero at the lower interface), and (b) tlieflow inclina-
tion must be the same on both sides. In Mnearized theory, boundary con-
dition (a) is essentially a condition on the axial perturbation velocity

.-, .-. ----- .. ..—.=. —..——. .— .. ..—. — — —.— ———.—. --———. -—— —--—
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u, and boundary condition (b) is essentidly a condition on the trans-
verse perturbation velocity v. At the lower interface, condition (b)
yields no Wormhtion, since no direction can be assigned to the zero
velocity in the bottom region; thus (a) and (b), as ap@ied to both
interfaces, yield three boundary conditions. .

Solution in general form. - The geneti solution for each region is
expressed in the form of a Fourier idegrd-j such a form is capable of
satisfying arbit~ boundary conditions. The variable of lntegration
is A, and terms like Al(k) cos lx, Bl(l) sin xx, and so forth, appear;

there are six Fouri& coefficients Al(k), B1~), AE2(~), Fz(A), ~(~) ~

and H2(A] to be determhed.

Application of boundary conditions. - The velocity components in
Fourier integral form are now substituted into the three boundary con-
ditions; eq~ting corresponding coefficients of sine terms and cosine
terms results, in effect, in six equations. Two of the equations yield
E2(A} = F2(X) = O; thus there remain four equalions which are solved

simultaneously for the foux remaidng Fourier coefficients Al(l)> B1(~)~
G2(A], and E@

Solution for pressure slong upper interface. - The perturbation
pressure along the upper interface is proportional to U2 there; the

expression is of the fonn of a Fourier integral involvm G2(A) and

H2(X), which are IIDW knuwn. Evaluation and simplification of the

in.tegal is complicated and tedious; the final result is expressed in
series form and evaluated numerically. In this evaluation, functions
tabulated by Tsien and Finston are employed.

Solution for displacement of each interface. - The local displace-
ment ~(x) of an interface from its undisturbed POSition is obtained by
titegration of the slope d~dx; this slope is related to V2 by

dJ=v2
&c

-G

Like ~, V2 has been ‘obtainedas a Fourier inte~ involv% G2(~)

and ~ (A), and ~ and H2 are now ISIIOWII. &@% ==uation and

simplification of the titegrals is an involved process, and the final
displacements are exhibited in series form and evaluated numerically.

RESULTS AND DISCUSSI~

Present Modtiied Tsien-Finston Model

Mach nunber parsmeter EJ.
Ml and ~ of the respective

- In the results herein the Mach numbers
supersonic and subsonic stresms appear in

Inco
a’
N

.
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a jotit parameter 6 as well as individually.. For a given v~ue of ,e,
M2 is a prescribed function of Ml (see equation (B32)). me curves of
M2 against Ml for seveml values of e are given in figure 2, which
has been reproduced from figure 3 of reference 2. Tsien and Finston
note that if the representativeMach nunibersfor the boundary-~er
flow and the free stream are taken to be 0.8 and 2, respectively, then
the corresponding val.ueof e in the flow model is a~roxtitely 3Jc/4.

Pressure distribution. - Curves of the pressure distribution along
the upper interface calculated from equations (B62) and (B63) with the
aid of functions tabulated in reference 2 are given in figures 3(a),
3(b), and 3(c) for values fi/4,Yr/2,and %/4, respectively, for the
Mach nuniberparameter e. These curves exhibit the ssme infinite pres-
sure peak at the point of shock incidence (~ = O) found by Tsien and
Finston with the original model. A s~ peak was foundby LighthiKl
(reference 5) inhis model with continuous, rather than stepwise, veloc-
ity profile; in that case the peak occurred inside the simulatedb~
layer at the point of reflection of the shock from the sonic line. Such
a peak will.be mcdified in a real flow and probably wi3J appear as a
localized region of high pressure.

Dispkcement of upper and lower interfaces. - The respective dis-
placements of the upper aud lower interfaces from their undisturbed
positions have been designated ~ and ~; both are functions of the

longitudinal distance x. Convenient correspondingnondimensional

m,h”fi qL’=d ~
‘m-ters ‘e 2bp2’2c’ Z@Z Curves of the displacement

~“
1 against longitudinal distance in terms of these nondhensional paruters

are plotted in figures 4(a), 4(b), and 4(c) for e equal to Yr/4,It/2,
and .%/4, respectively. The infinite slope at x = O, associated with

, the pressure peak there, is so localized on the &!awings as to be
scarcely distssbble.

t The scales are such that the vertical and horizontal displacements1
of a given inter5@ce are to the same geametric scale for the case
~ = 1/8 rdtij for th~ value of z the separation of the interfaces
is to correct scale when, in addition, j32= Yc/20 for L3= Ye/4(Ml = 2.5,

t
~= 0.988); f32=YC/10 for e =Yr/2 (Ml= 2.7, ~ = 0.95); and ~2 =x/6

for e = 3Yc/4(Ml= 3.1, ~= 0.@. Nwierical valhes of the ordinates

and abscissas are also tabulated in tables I and II.

Comparison with supersonic flow above still air, no boundary layer. -
The curves are now to be compared with the conjecture given in the intro-
duction: namely, that in the shplified model of figure 1 the upper
interface behaves, in the vicinity of the shock, substantially as if the ‘
entire boundary layer (representedby region 2) were replaced by a dead-
air region (an extension of region 3); that is, that the upper fiterface

—.. .— ———.. . ... ... . .. . _______. . . . .__.. ____ --- —.- .-—— ______ ___
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deflects through an smgl.e 2Z just as the dead-air interface does in
sketch 3. The comparison shows that the curves in figure 4 approximate
the conjectured behavior; both interfaces asymptotically a~roach the
expansive turn through an angle 2c.

For each interface, the final asymptote does not intersect the
initial asymptote (which is the g-axis)~at the point of shock incidence,
~ = O; instead the point of intersection lies somewhat downstream thereof.
The po3nt of intersection of the two asymptotes may be thought of as the 2,:
effective “corner” for the turn t~ougb 2cj its displacement amounts co
from one to several “reduced”boun~-1.syer thicknesses (reduced thick-

N:

ness = b~2}, depending on the value of “theMach nuniberparsmeter 6. 1

The local deviation from the asymptotic behavior, that is, from the
rectilinear corner turn of sketch 3, is limited essentially to several
reduced boundary-hyer thicknesses upstresm and downstream of the effec-

{,

tive corner.

Further Generalization of Tsien-F3nston Model and Limitations .

T@ flow model of figure 1 is supposed to simulate only one aspect
of shock boundary-lsyer interaction,namely, the local effect of the
separated region in the vicinity of the point of shock incidence. An
obvious further generalization,k.ter found to be of questionable util-
ity, is sketched in figure 5. Here the dead-air region is limited to a
finite length to approximate the “separationbubble,” and on either side
thereof the solid-wall condition usedby Tsien and Finston is rea~lied.

When points S and R are both more than several reduced boundary-
layer thic&esses from
in the neighborhood of
ation serves to justify
of figure 1 in which S
infinity, respectimly.

1, the petit of shock incidence, their effects -
I wouldbe expectedto be small. This consider-
the use, for the neigliborhoodof 1, of the model
snd R are effectively removed to minus and plus

There is another mentionable dfierence between the models of fig-
UI’eS 1 and 5: In figure 1 the perturbation pressure in the dead-air
region is taken to be zerd (for shplicity}, whereas a positive pertur-
bation pressure is intended in figure 5. The pressure rise In figure 5
is effected by means of a weak shock or Mach wave incident just above S,
resulting in the general upward slope of the boundary layer between S
and I. This more realistic positive pressure perturbation in the dead-
air region may be introduced into the model of figure 1 by imagining the
weak shock associated with point S to occur at minus hfinity to the
left. Then the entire flow field wiU.have an upward deflection (say cl) ‘
corresponding to the flow deflection through this shock. As a conse-
quence, the interface deflections of figure 4 will have supe~osed a

——. .——___ ._ . –—— .— .-— ._.. _____ .- _____.
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deflection q = 61X (or ~~=~” ~ )j this iS StbSt~t~

as though each figure were ro ated coun erclockwise through the angle
&l.

As a genertiizationfrom a single aspect to a more complete picture
of shock boundary-lsyer interaction,the model of figure 5 has serious
shortcomings. The model by itself is “insufficientto determine the posi-
tions of separation and reattachment S and R; for this purpose the

,! neglected viscosity will have to-be brought into the picture. Moreover,
U-I between I and R the actual boundary-layer flow will probablybeccme

turbulent, snd the neglected turbulent momentum exchange acrossboth of
the idealized interfaces will msrkedly tiluence the shape of the effec-
tive interfaces and the location of R. The transition to turbulent
flow wilJ probablybe decisim in determining R unless the ticident,’
shock is relatively weak, since otherwise the large abrupt press~e rise
upon reattachment would be ~ected to reseparate a lsminar lsyer but
not a tubulent one. For these re~ons it has not seemed worthwhile to
&e a serious effo~ to obtain an analytical solution for this model.

Applicability of the Assumptions of Boundary-Layer Theory
.

On the present model of shock boundary-lsyer interaction,the region
in which the upper and lower interfaces show substantial curwitures and
deviations from pardd.elismhas been showu to be l~ted to one br two
reduced boundary-lsyer thicknesses on either side of the point of shock
incidence; a similar result is found for the original Tsien-Fhston
model. These results imply that it is only in this region that the com-
ponent pressure gradient dp/dy is significant. Elsewhere the prx
assumption of’the Prandtl boundary-l~er theory, nsmely, that dp/dy
maybe neglected, appears to be applicable.

The situation seems to be as follows: Both models of shock bo&iary-
layer interaction completely neglect viscosity,but ticlude the inertial ~
effects in both x- and y-directions, although in idealized fashion. The
boundary-layer theory, on the other hand, includesviscosity and the
inertia effects in the .x-directionalone, the latter with idealization.
The results of these models, despite their neglect of viscosity and
other idealizations, stifice to de13mit the small region directly under
the incident shock in which the inertia effects in the y-direction must
be included. It appears to be a proper Qference that the Prandtl
boundary-layer equations, lamins.ror turbulent as the case maybe, and
with provision for interactionwith the outer flow, may be applied ‘

. upstresm 6.nddownstream of this region, except possibly at-the point
of reattachment of the separated bubble. The separated bubble itself,
except that portion directly under the shock, is included in the
region of applicability.

.
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Furthermore, the extension of the boun~-@yer equations into the “ “ ~
forbidden region, with the assu@ion of a sudden turn of the displace-
ment surface through an angle 2c at the shock, appears to be justified
in a practical analysis where accuracy in local flow details at the
shock is secondary to the over-all picture; this conclusion is in sup-
port of a phase of the treatments of references 6 and 7. (If the
ticident shock is too weak to cause a separated bubble, the 2s turn
at the shock must Fe re@aced by another condition.) Present unknown
elemeritsin such an application appear to be the choice of the point of m:
transition to turbulent flow, if the boundary layer is not initiald.ytur- W

a I
bulent, and equations relating pressure distribution and displacement N’.

thickness for a separated region of a turbulent or trtisiti@al boundary
l@er.

,,
1,
;’

Lewis Flight Propulsion Laboratory
National Advisory Comnittee for Aeronautics

Cleveland, Ohio, September 19, 1952. .

.

cNote added in proof: In a newly published paper (“A Mixing Theory for .

the Interaction Between Dissipative Flows and Nearly Isentropic Streams,”
Jou!r.Aero. Sci., vol.“19, no. 10, Oct. 1952, pp. 649-676) Crocco and

.

Lees have, in effect, supplied the missing relation between pressure dis-
.

tribution and displacement thickness for a turbulent or transitional
boundary’layer by means of an assumption on the rate of mixing with the
outer flow. In their work the boundary layer is replacedby a qmsi-one-
dimensional flow with the aid of quantities calculatedly the Prandtl
boundary-layer theory. There is no conflict between the affirmative con-
clusions of the present paper on the applicability of the Prandtl theory
and the position taken in the Crocco-Lees yaper~

.
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,’ APPENDIX.A

SYMBOIS

The follow5ng symbols are used in this report: .

A1(X)I B1(~) Fourier coefficients appearing in the solutions for
the supersonic stream

E2(~)~ F2(~)~ Fourier coefficients apyearing h-the solutions for
G2(X), H2(k] the subsonic stresm

11,12)...,19 Designation for nine integrals considered in the
analysis

b thickness of

f. function of
\

g function of

subsonic region

X and y representing incoming waves

x and y representing outgoing waves

M Mach nunber

P static pressure

.

.
AP change in static pressure

reattachment point in figure 5R

2b~132; also separation petit in figdre 5I s =
I

I u undisturbed velocity

disturbance velocity components in x- and y-directions,
respectively .

I u,v

1
w =

(

rectangular Cartesian coordinatesX,y

-$F-$1=

p2 =

r

-J=F
parsmeter introduced in equation (B3)

.

—..-_— . . . .. . -—. ..-. —— .—- ._.. ________ -—.=—- .._. . . . . . _.. ..-. . .. . ..
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1(E)

P

Q

Slitmciipts:

L

u

Y=+o

y.+

1

2

Superscripts:

*

deflection angle of compression wave

displacement of interface &om undisturbed position

M22

Mach nuniberparameter deftid by cos ~

variable of integration

=/2bP2

{

o

step fun.ction defined by l(g)= +

1

density

disturbance velocity potentid

value of given
Y=-~

value of given
face, y = O

limiting value
zero through

ldmiting value
zero through

{k-..
2

M22 ,622
-l——

12 1312

function evaluated at the lower interface,

“tiction evaluated at the upper inter-

of given function as y approaches
values greater than zero

of given function as
values less than zero

denotes qua.ntities in the supersonic
(excepting 1~)

y approaches

region y > 0

denotes quantities in the subsonic region -b < y <0
(excepting 12)

indicates limit of given function as y + O; for
_le, f(y)* ~ ~- f(r)

,

g’
N

.

—.—- .——z -. — .— ———- —-—- ---—. —.-— ——. _ ._
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APPENDIX B

ANALYSIS

U

.

I In the present report, the boundary layer has been replaced by a
uniform stisonic stream of finite width b which is bounded on one side
by fluid at rest and on the other side by a uniform supersonic stream
of semi-infinite extent. For purposes of analysis, th@ configurateion
wilJ be considered oriented with respect to a rectangular Cartesian
coordinate system such that the positive x-axis is parallel to,.and in
the direction of, the undisturbed flow and coincides with the undisturbed
interfacebetween the subsonic and supersonic streams, and such that the
origin denotes the point of incidence of the given shock wave with this
interface (see fig. 1). Thus, for -b < y < 0 the flow is mibsonic,
while for y >0 the flow is supersonic. Furthermore, all quantities
in the supersonic region will be denoted by the m.ibscript1 and all,
quantities in the mibsonic region will be denoted by the subscript 2. ‘

Supersonic Region

Governing equation and solution for incoming waves. -
sonic stream, the linearized differentid equation for the
velocity potential ql is given by

%ql b2Q1

P>2 —-—=0

- ax2 ay2

and has as its solution

Q1 = f(x + i31Y}+ g(x - PIY)

b the super-
disturbance

(Bl]

.

(B2)

where f and g are arbitrary functions. The Undisttibed’flow has
been taken in the positive x-direction so t@.t waves represented by

:k~%3 -will be inco@ng waves
will be outgo- waves

For purposes of the a-s is~
specialized and taken to be

while those represented by
emanating from the ~er interface.

the form of the .function f wiU be

> X+ply<o

1 (B3)

where Ul is the und@mrbed velocity in the supersonic stream and
where y and c are parsmeters. If y tends to zero, the incoming
waves wild.degenerate into a sin@e compression wave with deflection

----- . . ... .——. ..— .— -—.= .-. —____ ._. ..__ -- -
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angle e, and the point of incidence of this shgle compressive wave
with the upper interface will be the origin of the given rectangular
Cartesian coordinate system.

Now, by definition, the components u and v of the disturbance
velocity sre given in terms of the disturbance veloci~ potential 9
by the relations

(M’)

Therefore, the components of the disturbance velocity of the incoming
waves are given by ~

1,

and

(B5)

(B6) ,

Inqoming and outgoing waves in Fourier-integal form. - It wKU.
prove useful to express the disturbance velocities of the incoming waves
in the equivalent Fourier-integral form. To do this, it is noted that
the components of the disturbance velocity of the incoming waves are
proportional to the

where WS X+py,
iequivalent fomn y

h(w) =:

function

) X+ply”<o

and that h(w) canbe represented in an entirely

(B7)

————_ . . . . . ——. — . --—— -.—-—— —.. . . . ._ —.



NAOA TN 2860 13

%
I O-J

m

,.

,,

Furthermore, the potential due to the outgoing waves can also be expressed
in Fourier-integrsl form, ns.mel.y,

where AI(A) and Bl(X) are undetermined Fourier coefficients. Thus,

after differentiation of the expression for. g(x - ply) to obtain the

disturbance velocities due to the outgoing waves, the separate distur-
bance velocities canbe superposed and the Fourier-inte al expressions

rfor the components of the total disturbance velocities of both incoming
snd outgoing waves) obtained. Eraluated at the u~er interface, these
disturbance velocity components will thenbe givenby

dk (B1O)

Subsonic Region

Govern3ng equation and general.solution ti Fourier-titegral form. -
For the subsonic stream, -b< y< 0, the linearized differential equation
for the disturbance velocity potential is given by

I z a%2 a332

i32--J+-= o

&2
(B12)

.

—.-. —_.__.__.— .. _ .
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and the solution q~ can be expressed, SRLOngmany possible forms, as

n.

—

d (B13)

where E2(X), F2(A), G2(A), and H2(X) are also

coefficients. Then, by retracing the steps just
sonic case,

l+(x,y) =

there is obtained

n.

undetermined Fourier

taken for the super-

.

m:

%’,
N

9 ,

and

Bounduy Conditions

In these solutions for the subsonic and supersonic streams, six
unknown Fourier coefficients Al(X), B1(A), Ez(A), Fz(X), G2(A), ~

H2(A) exist. However,
conditions at the upper
which must be satisfied
pressure, and (2) equal
condition (1) gives, in

these coefficients =e determinable by boundary

and lower interfaces. The physical conditions
across these interfaces are: (1) equal static
inclination of the flow. At the upper interface,
the small perturbation approximation,

.

.— .——._. _ _ —_____ _ . . . .. ... . . .—.. ___ _ .—. . —. _. _
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.

(I) -PIUIUl,y.~’ -P$#2,y=_Of O’~X (B16}

At the lo~r interface, the perturbation pressure is taken to be zero;
condition (1)

Condition (2)
speed is zero
yields (smaU

therefore reduces to

(11) ~,y+) =Oforallx

gives no information at the
below the interface; at the
perturbation appmximat ion]

(B17)

lower interface since the flow
upper interface, this condition

U2 for all x (B18)

Establishment of the four equations for the four Fourier coefficients. -
use of equation (B14), boundary condition II implies

.

so ttit E2@) and F2@) vanish identically and P2 reduces to

whence

and

Substituting equations (B1O) and (B21), the latter evaluated at
Y=- 0, into equation (B16), that is, boundsxy condition 1, gives

.

- —_
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,.

C08 Lx+ Cosk

Jo
L

whence, upon equating corresponding
of the fact that

p2U22 M22
—= —
P1U12 M12

there is obtatied

J

Fourier

for pl

and

M22
Al(k) - %’(x) @ s~ (wZ’)

2

Bl(X) - H2(A) ~s~ (~~2)

Wmilarl.y, boundary condition III (equation

(B23)

(B24)

I

coefficients and making use

= P2

(B25)

(B26)

.

so that

(B27~

(B28)

-— . .. —— -—— . .. . . . . . . __
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.’

B1(A) -
132

%0) pl— cosh (Xb~2) =

Hence, the problem is now reduced to one

1
*T2 +X2

of evalua%hg
undete-d F~ier coefficients~Al(l), B1(X), G2(A)~ ~

means of the four equations (B25), (B26), (B28), and (B29).

,-

devaluationof Fourier Coefficients

(B29) ‘

the four
H2(X) by

Solving equations (B25), (B26), (B28.),and (B29 simultaneously

{yields the following expressions for G2(X) W H2 m}:
,

K)%22%(i) p P22
si31h2(lbp2) +— 1cosh2 (Xb~2)

1 P12

[.

1322

()

22

1’—cosh2 (Xb~2)+ ~ SiIIh2 (XbB2)
P12 Ml

In addition, if the Mach nuniberparamete
M2~ e iS def -

ued such tbata

Cos
e
—=
2

(B32)

aAlthough simplicity is not necessarily there~y achieved, 0 is intro-
1’

duced so as to mainta3na parallel preserrtationwith that of reference 2.
.’

\.. . . . ___ ._____ ----- -..,___ ____ ____ .-- .,. ——— -.---.—- .—. —-—-- ——————______ .. ..— —.
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then

(B33)

so tkt G2(X) ~d ~(~) are dso given by

[0
Zz

1 M2
G2(X) ~ —

1

Cosh (2mp2) - Cos e

M12 C082 g
2 -1

and

[01 M22cosh (2~~2) - COS e-
H2(A) ~ —

M12 C082 g.
2-

(B34)

-2e 1“

[

M22

‘~” T2+A
@ COSh (kb~2) - —

Zplh
1

SiIlh (kb@2)
M12

(B35)

S~ly, by means of the sane equations, the following expressions for
Al(x) and B1(A) are also obtained:

(B36)

.

Inw
u)
N

.

———________ ___ .._ ____ ..._———— —-———----- —. —.- ,—. . .—
.
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and’ ,,

) (B37)
N

%
Solution for Pressure Along Upper Interface

With the Foaier coefficients AI(A),.Bl(k), Gz(k), ~d H2P) .

evaluated, the solution of the originally stated problem is now complete.
Ho~ver, there exist other quantities of interest such as the pressure

# distribution along the upper interface and also the displacement 02 each
interface from its undisturbed position. T!liesequantities will now be
considered.

If the change in pressure from the undisturbed value is denoted by
Ap, then the linearized value is

Ap = - puu

Hence, denoting quantities at the upper interface by the subscript U
and those at the lower interface
boundary condition I give

J
(Q)u= -P2u2%,p0” +2U22 ‘m

o

by the wibscript L, equation (B21) aqd

[ ] (B38)(W2) ~(~j COsxX-~@) sink dk

where G2(X) and H~(h) are given by equations (B34) and ,(B35). Or,

with use of equation (B24) and also since’equation (B32) further implies

22

F)

1322-
-—

M12
2COS U-1=

812
cos e =

2 22

r-)

1 + ~22

M12 7

(B39)

\

,.

. . .. . . --.-—- L--- .--. —-- .—— — ~——— ————— --———
_—— —. —— —— .-— — --
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equation (B38)

(.@)u
—=
1 2
~ Plul

.

WA TN 2860

132

can then be written as

(B40)

4e

[ JI

1
COS2 :

Y
~

Cos )LX +

)

sink dk -
T2 -1-A2 T2 -i-X2

o

1

f

Sinz e
ycosk+xsinu “\

2
d~ +

o
(y2 + A2~(cosh 2m~2 - COS e)

r
1

I

.

,’

)’

In
u) ,

%’
I

.

-.

( (w)

Limit as T+O (incomingwaves~step function). - If Y+O, the
incoming waves will degenerate into a single cowress ion wave with
deflection angle c. Consequently, h order to obtain the value of the
pressure change at the ~er titerface for a single compres~ion wave of

(AP?U I

deflection angle G, let y ~ O ti the expression for ~
~ P1U12“

Frcm equation (B8)a

1,

1,

. .

%ere, the subscripts under I designate the various integrals rather
than any position in a subsonicor supersonic stresm. .’

.. .. —..— —.__—_ ._ —___ . .. . . ._ —. ——. . —___ ._-. ____ _.— ____ _..
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,
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X<()

X.o

X>()

whence -

(Yr,

X<o

X=o

X>o

@43)

For the other integrals of equation (B41), a theorem justifying the
interchange of the processes of integration and of passing to a limit is
necessary. One such appropriate theorem which wi31 stifice for the

1= _SiS ti this report will now be stated (reference10, p. 474).

DEFINTi’ION.- Id R = (a=o$) denote the rectangle determinedly
a<x<-, a<t<p,p finite or infinite. The function f(x,t) is
sa~d t~be’~— IN R when: (1) f(x,t) has no point of infinite

, discontinuity in R; (2} f(x,t) is integrable ti a < x < CD for each
) t ina:tcp.

——

!

TEEOREM I. - (1) Let f(x,t) be regular in R = (a~@}, ~ finite
or infinite, except possibly on the lines x = al, . .

1

‘f

., x= ~. (2) Let
,, m

f(x,t)dx

a

1.

be uniformly convergent in act <-p. (3) M t+tO, to finite or-—

infinite, let f(x,t) approach a limiting function F(x) untiormly in
any region a <x’<b, except possibly on the lines x = ~, ... ., x + ~.——

Then,
P m,

Mm I f(x,t) ti “exists.
t+to

a

. . . .-. . ...— ..—— ______ ._ ._ _____ _____ _. —._—--- ..—.- . . —-..
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!,

I

I

“r J
am

f(x,t)dx = F(x)dx
t +t~

a. a

(4) Let F(x) be integrable ti any region a <x <b.—.

Then,

.

Thus, for

ftist letting z = yy so that

1

0

12 = Cos (yxz)
dz

(z2+l)(cosh~z~2 -Cos e)
o

and then apply- theorem 1, there is obtained

For

(B45)

-f

0

1im12=l
1 dz Yc Y(

~+ o cos e ‘=2(1 -cOs e)=Z2+1 4 Sinz ;
o

(B46)

r
.

and

‘J
0

A sinh(2bp#) Cos k

14= ‘

o
(T2 + A2) (cosh 2bp@ - Cos e}

(B47)

(E-48}

.

—. .— —.. .- —.=. .——. __ ._ ..._
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.

let

so that

.

Then,

and

L9stl.y,

s’ = zbxp2

“1(
0

13 =
JL

)
ds

S2
o # + (cosh S - COS e)

4b2~22

/

o

Mm 13 =
y+ o

0

Y
-

Mm 14 =
y+o

o

P-

sjn ~
3-(

S(cosh S - COS e)

Scg
“sinhscos T

S(cosh S - COS ‘6)

T sinh(2Ab~2)sti

as

as

/

xx

(B49)

(B50)

(lEl)

(B53)

(3354)

lim 15 s lim

‘ J-.

a= o
~+ o T+. (y2 + X2)(cosh 2~~2 - COS e)

o (B55)

Solution for single incoming compressive wave. - Combining these
five Limits yields

. . -— -. - . ..—.—.— —.. ....——.______ _ .__. ___ ___ ._ ._ .-— —. ———. —.— -—.—
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.

COS2 ;. l(E) - ; E&% ( )-1.

4 Sinz ;

r-

J
S+ - - -sinhscos~

& Sh2 e as+& stief“ ?(

s(COSh S - COS ej S(cosh s - Cos e

d
as

o 0
(B56)

where l(g) is defined by

{

0, ~<o -

1(.g)= ;, go = (B57)

1, < >0

Now, it can be shown by contour integration that, for ~ >0,

,.

(B58)

f

-
s5nh s Cos !%

1 37 1 - -(2n+l)E-

Z7 S(COSh S - COS e)
G

“z ‘ e
n-

0

Furthermore, since the integrands are odd and even functions of E,
respectively, it can hnediately be deduced that, for E<o,

J’
. d.+ ~1

z s(coshS - COSEJj

o

.

da= -1 1
~,#e-Zdslne

E z
[L1-,(ZC+l)E.“: E
2n +2-z

()3-1-e
1

SE-—

* ,~<o

(1360)

,.

“

— .—.



4C
NACA TN 2860 25

.

()x-e—< ()?c-e~fi 1-~c
e+

2n +2-: al+.:’
~~< o (B6Q

Therefore,”with the substitutioriof these results into equation (B56),
,it follows that:

(AP)U
kiln =
y+o * plulz

(B63)

Displacement of I@er Interface

A quantity of primary hrterest is the shape of the distorted inter-
face between the supersonic and the stisonic flows: The slope of this
interface is related very simply to the abeady determined pressure at
the interface,
placement from

given by

according to the following considerations. ‘H the dis- ,
the undisturbed position is denoted by ~, this slope is

d~ V2

ax
—a% ~%)Y=o (B73)

.
Nowj applying the boundary condition of equal slopes bnapproximately.

both sides of the interface, equation”(B18) gives

Furthermore, VI can be related to

going waves exist, corresponding to
by differentiation of g,

U1., In the region ~ c 0, only out-

the g-function in equation (B2); thus

.

--—.—— -— . —.-. ———. _ — .-—— ..———— .—— .—- -—. —... -- —--— . . --- ——-
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providing a
in equation

flow deflection c for

NACA TN 2860

.

E<o, y=o (B75a)

in addition, the incoming weak shock
y+ Oj corresponding to the f-function

(B2); this provides.an additional term such that

libnVI = - p~u~ - 2W1 g>o, y=o (B75b}
PO 8

%’
When these equations are cofiined, there results

Then, by virtue of the relation ~ = -
.

This is the destied relation between the
the interface.

Upon substitution of the ‘calculated
(B63}, there results

g-=o, y=o

(B76]

g>o, y=o

PIUIU1, this maY be written

(B77)

26, .g>o, y=o

local slope and the pressure of

Pressm, equations (B62) and

.

1’,,1

t

t’

.

.
.— — —- — ————— . . . . .. . —____ .._ _..
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.

Expressions for displacement of upper interface. - Denoting
d% d~*

kiln~ by ~ , equation
T+ ()

‘kJ* d~ d~*
---== T..&

Thus, with the assumptiorithat

the

?-@-; e) = o
d~

expressions for ~ can be integrated

while for ~ z O, since

r
o

d -a

there is obtatied

0

e
—

and will yield

(2n+2 - ~’2 ‘

J
E

+0

(B80)

.g<o

(B82)

-. ()- 2n+ :E
3ti e

z

e

3-(

‘(. )

2
n=o ‘?n+’~

..?(.

+.g

(B84)
.

Hence

.–— .. -. . .— .—. — .- ...- .— .———F —- . . . . —— ——— — -————
.—-— —— ..-
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.

Therefore, in summary,

*E; e)“+%

.

pef=+)’
*sine

n=o’ )
2;,

&z_:
.

26
sin e

-7 z

~<o (B82)

By ~ection Of equations (B82) and (B85), it is noted that

~*(.E; 0) is fhite and continuous at g = O, while, on the other hand,

equations (B78) and (B79) show that dq@/dx is infinite at ~ = O.

.

Displacement of Lower Interface

Finally, the expression for the displacement of the lower interface
willbe derived. If the displacemeti from the undisturbed position is
denotedby qL, this displac--nt will have

approximationby

‘~L ‘2,y=-b
x= U2

a slope given in linearized

(B86)

or, with use of equation (B22),

n“.

where G2(X) and H2(A) are givenby eqktions (B34) and (B35). That is,

.;

.

.

I \

I

,

.—— —.. .. —-_ .——._ —.. — .._. — .— — —— .-————--- . . . .—— .—. — .,’
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,-n -

‘~L—=
dx

1

I
N
m
m
w

I
I

(z

(-) jM22 (T2+X2) +(cosh2Xb~2 - COSk)

M12
o

Limit as T~O (incoming wave~,step function). -
now be given the various parts of the expression for

passes to the lhit T = O. For

(B88) -

Consideration will
d~~dx as one again

first letting X = yz, there is obtained

f

m

Mm 16 = lq
SiIlh (ybz~2).Sill (~Zj

dz z O (B90)
y+ () y+() (1 + Z2)(cosh 2yzb~2 - cos e)

o

Similarly, for

f

-
T COSh (Ab~2) COS k

17 =
o (T2 + k2)(cosh 2~~2 - COS 19} ‘X

(B91)

.

f

n

lim 17 = lim
cosh (yzb~2) COS (y&) dz

(B92)
T+o T +() (1 + Z2)(cosh 2yzb~2 - cos (3) .

0

f

-

1.=
1.- Cos e ~=l-~ose”$

o

. -. .-.-— . . . . .... —.- ... ..__ ._ -. _.. ______________ ....__ ----- -_-~_. . ..
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so that

NACA TN 2860

.

lim 17 =
m

T+ O 4 Sinz e
2

For

(B93)

J
, ~cosh (Xb@ .SiI1 k ~x

18 E (B94)
(y2+A2}(cosh2Xb~2 -COSe) ,

0

and
i’

intrcducing S and ~ as before yields

f“
m ~

S cosh : SiIl ~

18 = ds

(

S2

)

(B96)

o T2 + ~g (cosh S - COS e) ‘
4b ~2

and

whence

and

f

m Ssi+ Cos ~
a

19 =

(
as

S2

o yz +
)

(cosh S - COS 6)

4b2~22

.. . . .

“!
a ~osh,g s.ti~ ‘

lhn 18 = 2
S(cosh S - COSfi@

as

p o
0

).
. ..’ ...

.,. .

..1
9 -s SE

Sinh ~ Cos y
Ma 19 = S(cosh S - ‘COS e)

as

T+.?. . . . ~ .. ..-., >.”

(B97)

(B98)

.

(B99)

-— .-.. . —- .——. . —.-— ______ —r._ .
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N
o-a
m
(n

Furthermore, foldowing reference 2, it can be shown that, for ~> O,

—

lim 18=
y+()

and

.

L

, .g<o (Bum)

[

-~~(_l)ne(al)E~:/~,.f:j,,<0 (B102)

Mm 19 E
T*O

--~(-’’n(&l)lr~ )~:~lJElOE’O (ma)

1

2 Cos :

I

Simplfiication of expressions for slope: - Combining these 13mits
and using equations (B32) and.(B40) yield

(B104)

That is,

. — .—. ..— - ,________ _ ——c —.. .. . _____ ———- .—..— ..—. .
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Furthermore, by symnetry considerations
follows that, for ~ z 0,

NACA TN 2860

of the various inte~ands, it

--+!), ;-,
+

1

+
2n+2-: 2n+:

/

That is,

Therefore, in s~ry,

3-(
J

Final.expressions for displacement of lower interface. - If
d%

Mm ~ is denoted by
T+ o

so that inte~at ion of
condition

dqL+
~, it is noted that

(B107)

(Blo5)

(B108)

.

.

●

.

.

.

equations (B105) and (B107), along with the bounckry

~L+(-m; e) = o- (B109)’

—.— .. -—. —.. - _—-. —-.
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yields, for ~ z O,

For g > Oj

33

~L*(gje) ‘l’dqL*~;e’d

Therefore, in summary

(Bllo)

.

‘Mth ~L*(gje) and d~~*/dx are continuous at ~. = O. The con-

ttiuity of qL4~e) is readily seen while the continuity of d~L*/dX

may be shown by lettfig x = elti in the formula for YC/stiYCX given
page 208 of reference 10.

0

,

on

. . . . . . . ______ .- __-, -._ L_- _____ _.. ____ -,- _- —-—..—-. — .— __ ... .
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TK8LEI - PERTUR8ATION OF

-5.0
-4.0
-2.5
-1.75
-1.(X3
- .75
- .50
- .40
- .25
- .10
- .05
0
.01
.05
.10
.25
.40
.50
.75

1.CQ
1.75
2.50
4.0
5.0

0.00001
.00007
.00093
.00345
.0132
.0208
.0335
.0410
.0562
.0804
.0925
.1108
..11.38
.1215
..1253
.1240
.1169
.1017
.0516

-0.0137
- .28o3
- .6323-
-1.5293
-2.2368,.

0.00008
.W035
.m335
.0103
.0324
.0480
.0722
.0856
.1120
.1520
.1715
.1993
.2009
.2018
.1958
.1564
.lC03
.0566

-0.0686
- .2117
- .7168
-1.m2
-2.6075
-3.540

.

&311/4

0.00028
.00097
.00632
.01620
.0416
.0584
.0820
.0944
.lmo
.1517
.1675
.1891
.1856
.1679
.1408
.0450

-0.0620
- .1377
- .3363
- ‘.5450
-1..2120
-1.9155
-3.3750
-4.3650

3z/4

.

___ --- —.— ..-—.—.. —— .—— __. . . .. ——. . —-. . .—. .—,
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TABLEII- EMTWWUTOI? OF LOWER INTERFACE

E E+C[4 ‘9=7(/2I 8=31T/4

-5.0
-4.0
-2.5
-1.75
-1.00
- .75
- .50
- .40
- .25
- .10
- .05
0
.05
.10
.25
.40
.50
.75

1.00
i.75
2.5
4.0
5.0

-0.000013
- .CX)O07
- .00100
- .00368
- .o134
- .0205
- .0309
- .0362
- .0459
- .0577
- .0622
- .0670
- .0721
- .0775
- .0959
- .U73
- .1338
- .1811
- .2389
- .4735
- .7942
-1.6420
-2,3253

,.
,—.— ——. _ . .._ ._._. _____ _.

-0.00011
- .00050
- .00472
- .0144
- .0436
- .0625
- .0890
- .1021
- .1250
- .1522
- .1623
- .1728
- .1841
- .1962
- .2358
- .28Q3
- .3130
- .4065
- .5168
- .9293
-1.4453
-2.6725
-3.5775

-0.00073
- .00254
- .01653
- .0420
- .1057
- .1428
- .1918
- .2150
- .2550
- .3a35
- .3173
- .3345
- .3528
- .2718
- .4330
- .5013
- .5503
- .6860
- .8385
-1.3803
-2.0100
-3.4025
-4.4675

.

.

(,

i!

.

,.

.

.

— — . . _. .._ ___ __ .--L____ .
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.
●

hci.dent wave

Outerflow
>

Simulatedboundarylayer
*

.

///////’./’//’/’ ,
Sketch 1.

Sketch 2.

sketch3.

.
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.

‘–+?I—.
&

Region1: Super

T
b

I I
Region’Z:W-sonic flow

I

Region3: Fluidat rest

1

Figure 1. - Compressionwavewithdeflectionangle & incidentupon the
interface betweena supersonicstreamanda psrallelsubsonicstream
flowingoverfluidat rest.‘

1.00

.96

.92

.88

M2

.84

.&l

.76

.72-.-L 2 ..3 4 ‘ 5 6 7 8 9 10

Figure2. - Machmmber ~ In the supersonicstream against
hch number ~ in”the mibsonic stream for s6veralvalues
of theMichnumberparameter 0.
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